|
Почему насосы не могут всасывать жидкость с глубины более 9 метров?Ежедневные вопросы по поводу того, почему же насосы не могут всасывать жидкость с глубины более 9 метров сподвигли меня написать статью об этом.
Для начала немного истории: В 1640 г. в Италии герцог Тосканский решил устроить фонтан на террасе своего дворца. Для подачи воды из озера был построен трубопровод и насос большой длины, каких до этого еще не строили. Но оказалось, что система не работает — вода в ней поднималась только до 10,3 м над уровнем водоёма. Никто не мог объяснить, в чем тут дело, пока ученик Галилея — Э. Торичелли не высказал мысль, что вода в системе поднимается под действием тяжести атмосферы, которая давит на поверхность озера. Столб воды высотой в 10,3 м в точности уравновешивает это давление, и поэтому выше вода не поднимается. Торичелли взял стеклянную трубку с одним запаянным концом и другим открытым и заполнил ее ртутью. Потом он зажал отверстие пальцем и, перевернув трубку, опустил ее открытым концом в сосуд, наполненный ртутью. Ртуть не вылилась из трубки, а только немного опустилась. Столб ртути в трубке установился на высоте 760 мм над поверхностью ртути в сосуде. Вес столба ртути сечением в 1 см2 равен 1,033 кг, т. е. в точности равен весу столба воды такого же сечения высотой 10,3 м. Именно с такой силой атмосфера давит на каждый квадратный сантиметр любой поверхности, в том числе и на поверхность нашего тела. Точно также, если в опыте с ртутью вместо неё в трубку налить воды, то столб воды будет высотой 10,3 метра. Именно поэтому и не делают водяных барометров, т.к. они были бы слишком громоздкими. Давление столба жидкости (Р) равно произведению ускорения свободного падения (g), плотности жидкости (ρ) и высоты столба жидкости: Атмосферное давление на уровне моря (Р) принять считать равным 1 кг/см2 (100 кПа). Примечание: на самом деле давление равно 1,033 кг/см2. Плотность воды при температуре 20°С равна 1000 кг/м3. Ускорение свободного падения – 9,8 м/с2. Из этой формулы видно, что чем меньше атмосферное давление (P), тем на меньшую высоту может подняться жидкость (т.е. чем выше над уровнем моря, например в горах, тем с меньшей глубины может всасывать насос). Также из этой формулы видно, что чем меньше плотность жидкости, тем с большей глубины можно её выкачивать, и наоборот, при большей плотности глубина всасывания уменьшится. Например, ту же ртуть, при идеальных условиях, можно поднять с высоты не более 760 мм. Предвижу вопрос: почему в расчетах получился столб жидкости высотой 10,3 м, а насосы всасывают только с 9 метров? Ответ достаточно простой: - во-первых, расчет выполнен при идеальных условиях, - во-вторых, любая теория не дает абсолютно точных значений, т.к. формулы эмпирические. - и в-третьих, всегда существуют потери: во всасывающей линии, в насосе, в соединениях. Т.е. не возможно в обычных водяных насосах создать разрежение, достаточное для того, чтобы вода поднялась выше. Итак, какие выводы из всего этого можно сделать: 1. Насос не всасывает жидкость, а лишь создает разрежение на своём входе (т.е. уменьшает атмосферное давление во всасывающей магистрали). Вода выдавливается в насос атмосферным давлением. 2. Чем больше плотность жидкости (например, при большом содержании в ней песка), тем меньше высота всасывания. 3. Рассчитать высоту всасывания (h) можно, зная, какое разрежение создает насос и плотность жидкости по формуле: h = P / ( ρ* g) - x, где P – атмосферное давление, - плотность жидкости. g – ускорение свободного падения, x – величина потерь (м). Примечание: формула может использоваться для расчета высоты всасывания при нормальных условиях и температуре до +30°С. Также хочется добавить, что высота всасывания (в общем случае) зависит от вязкости жидкости, длины и диаметра трубопровода и температуры жидкости. Например при увеличении температуры жидкости до +60°С, высота всасывания уменьшается почти в два раза. Это происходит потому, что возрастает давление насыщенных паров в жидкости. В любой жидкости всегда присутствуют пузырьки воздуха. Думаю, все видели, как при закипании сначала появляются маленькие пузырьки, которые затем увеличиваются, и происходит кипение. Т.е. при кипении, давление в пузырьках воздуха становится больше, чем атмосферное. Давление насыщенных паров и есть давление в пузырьках. Увеличение давления насыщенных паров приводит к тому, что жидкость закипает при более низком давлении. А насос, как раз и создает в магистрали пониженное атмосферное давление. Т.е. при всасывании жидкости при высокой температуре, существует возможность её закипания в трубопроводе. А никакие насосы не могут всасывать кипящую жидкость. Вот, в общем, и всё. А самое интересное, что все это мы все проходили на уроке физики при изучении темы «атмосферное давление». Но раз вы читаете эту статью, и почерпнули что-то новое, то именно "проходили" ;-) |